

Platform Trial Designs for Sequential Treatment Evaluation

2024 Society of Decision Professionals Annual Conference

Alex Kaizer, PhD

Decision Quality Framework

 We will work through the decision quality framework to motivate our decision to use a platform trial design

colorado school of public health

3

Motivating Case Study: West Africa Ebola Virus Disease Outbreak

Relevant and Reliable Information

- No approved interventions existed prior to outbreak
- Uncertainty how the epidemic would evolve
- High mortality (>70%) early in outbreak
- Variable public health and research infrastructure throughout West Africa
- Need to generate robust evidence through randomized controlled clinical trials

Appropriate Frame

- **Objective:** identify a therapy or vaccine for treating Ebola virus disease as quickly as possible from multiple candidates
- Trial Outcome: 28-day mortality given high rates of mortality initially observed

Clear Values and Tradeoffs

Efficiently use limited sample sizes to:

- <u>Maximize</u> statistical power
 - i.e., the probability we will identify an effective intervention in the study if it exists
- <u>Minimize</u> *type I error rate*
 - i.e., the probability we identify an intervention as effective when it has no effect
- <u>Reduce</u> bias

• i.e., how much we over- or under-estimated the true effect

"Traditional" Approach to Trial Design

- Allow for creation of separate trials from different sponsors
- Limited collaboration, if any, across studies
- Each study may use different designs, outcomes, timelines for data collection, etc.

Creating Alternatives I

A sequential platform trial was ultimately proposed and implemented with the NIH to evaluate multiple candidates:

9

Creating Alternatives II However, we could incorporate past segments of data in the analysis to more efficiently use our limited sample size:

10

Creating Alternatives III Finally, we could also incorporate adaptive randomization to assign more individuals to novel trial arms:

Sound Reasoning (and Tradeoffs)

If we assume <u>constant</u> mortality over time:

NIH design: can achieve desired type I error rate, but may have low power

- + Information Sharing: can both lower type I error and increase power relative to NIH design with little bias
- + Adaptive Randomization: can also allocate more individuals to the potentially effective treatment arm

Sound Reasoning (and Tradeoffs)

- If we assume <u>decreasing</u> mortality over time: _____ **NIH design:** can achieve desired type I error rate, but power decreases greatly as mortality decreases
- + Information Sharing: increased power and type I error rate, potential for bias from past segments
- + Adaptive Randomization: will still allocate more individuals to the potentially effective treatment arm

Commitment to Action (Trial Results)

- NIH trial terminated early due to success of public health measures, which prevented desired enrollment of 100 per arm in first segment
- Patients in treatment arm had lower 28-day mortality rate (22% vs. 37%), but it did not meet the prespecified statistical threshold for efficacy
- Did demonstrate minimal safety concerns with the intervention

General Lessons Learned

- Information sharing can increase efficiency, but may also introduce bias
- Trade-offs in performance (i.e., bias, power, type I error rates) may be more acceptable in different contexts (e.g., chronic disease vs. epidemic)
- Designs considered do improve upon inefficiencies in traditional clinical trial design

Sources

- Dodd, Lori E., et al. "Design of a randomized controlled trial for Ebola virus disease medical countermeasures: PREVAIL II, the Ebola MCM Study." *The Journal of infectious diseases* 213.12 (2016): 1906-1913.
- Kaizer, Alexander M., Brian P. Hobbs, and Joseph S. Koopmeiners. "A multi-source adaptive platform design for testing sequential combinatorial therapeutic strategies." *Biometrics* 74.3 (2018): 1082-1094.
- Hobbs, B. P., Carlin, B. P., & Sargent, D. J. (2013). Adaptive adjustment of the randomization ratio using historical control data. *Clinical Trials*, *10*(3), 430-440.

Questions?